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Conditioned spikes: a simple and fast method to represent rates
and temporal patterns in multielectrode recordings
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Abstract

Increasing evidence suggests that the brain utilizes distributed codes that can only be analyzed by simultaneously recording the activity of
multiple neurons. This paper introduces a new methodology for studying neural ensemble recordings. The method uses a novel representation
to provide complementary information about the stimuli which are contained in the temporal pattern of the spike sequence. By using this
procedure, a high correlation of synchronized events with stimuli times is apparent. To quantify the results and to compare the performance of
this method against the most traditional raster plot, we have used Fano factor and cross-correlation analysis. Our results suggest that several
consecutive spikes from different neurons within an extended time window may encode behaviorally relevant information. We propose that
this new representation, in addition to the other approaches currently used (standard raster plots, multivariate statistical methods, neuronal
networks, information theory, etc.), can be a useful procedure to describe population spike dynamics.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

An emerging view in neuroscience is that sensory and
motor information is processed in a parallel fashion by pop-
ulations of neurons working in concert (Fernández et al.,
2000; Nicolelis, 1999; Nicolelis and Ribeiro, 2002; Panzeri
et al., 1999). Encouraged by this progress many laborato-
ries are investing considerable effort into the development
of recording techniques and spike-sorting algorithms that
permit simultaneous recording of the activity of multiple
neurons (Kralik et al., 2001). In this context, a fundamental
and long-standing question is the type of neural codes used
by the population of neurons to represent information in
trains of action potentials (Meister and Berry, 1999; Rieke
et al., 1997). The firing rate of spike trains is a candidate for
such a neural code (Abbot and Sejnowsky, 1998), however
it is possible that spike timing rather than firing rates plays
a significant role in this task (Funke and Worgötter, 1997;
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Singer, 1999). A key factor in distinguishing among these
theories is the temporal precision of individual action po-
tentials. In spite of that, and as it was very clearly pointed
out by some authors (Rieke et al., 1997; Usrey and Reid,
1999), this distinction cannot be pushed too far because both
concepts are intrinsically related and the mere introduc-
tion of time discretization certainly blurs their differences.
Therefore, it is important to measure this precision and to
develop new methods to describe population spike trains.

Taking into account the above considerations, we have
developed a simple representation of the spiking dynamics
in multi-electrode recordings. As we shall explain below,
the events we consider areconditioned spike times, where
the condition we impose is the presence of another spike in
its temporal vicinity. By using this procedure, several char-
acteristics of cell dynamics are readily apparent, and more-
over, a tight correlation between stimuli and cell responses
can be assessed. We introduce this new representation as a
complementary tool to be used jointly with standard raster
plots. To present our results, we have selected arbitrary
conditioned spikes windows (see below), understanding
that particular applications would require a full exploration
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in the parameter space, as we have partially done in the
examples presented in this study.

2. Methods

2.1. Experimental procedures

Extracellular recordings were obtained from ganglion
cells in the isolated superfused albino rabbit (Oryctolagus
cuniculus) retina using a rectangular array of 100, 1.5 mm
long electrodes with platinized tips, as reported previously
(Fernández et al., 2000). After enucleation of the eye, the
eyeball was hemisected with a razor blade, and the cornea
and lens were separated from the posterior half. The retinas
were carefully removed from the remaining eyecup with the
pigment epithelium, mounted on a glass slide ganglion cell
side up and covered with a Milipore filter. This preparation
was then mounted on a recording chamber and superfused
with bicarbonate-buffered Ames medium at 35◦C.

For visual stimulation a 17′′ NEC high-resolution RGB
monitor was used. Pictures drawn on this screen were fo-
cused into a 6 mm× 6 mm image onto the photoreceptor
layer. The retina was flashed periodically with full field
white, “composed” light squares and the electrode array
was lowered into the retina until a significant number of
electrodes detected light evoked single- and multi-unit re-
sponses. This allowed to record with 60–70 electrodes (on
average) during each experiment. The retinas were then stim-
ulated with random flicker stimulation (DeVries and Baylor,
1997; Warland et al., 1997). For this purpose, the screen in-
tensity was updated by drawing a new grey value (binary
combinations of the red, green, and blue channels of the
monitor) from a Gaussian probability distribution. The stan-
dard deviation of the Gaussian distribution was 35 or 25%
of the mean.

The electrode array was connected to a 100 channel am-
plifier (low and high corner frequencies of 250 and 7500 Hz)
and a digital signal processor based data acquisition system.
All the selected channels of data as well as the state of the vi-
sual stimulus were digitized with a commercial multiplexed
A/D board data acquisition system (Bionic Technologies,
Inc) and stored digitally. A custom analysis program sam-
pled the incoming data at 30 kHz, plotted the waveforms on
screen, and stored single spike events for later analysis. Sep-
aration and classification of these action potentials on each
functional electrode was done off-line. Single unit classi-
fication was accomplished with an unsupervised statistical
classification method using mixture modeling (Fernández
et al., 2000; Normann et al., 2001; Shoham et al., 2003;
Warren et al., 2001). Each spike consisted of 48 time sam-
ples (1.6 ms).

2.2. Definition of events

Given an experimental record from a single neuron, we
call ti the time of thei spike. In the case of multivariate

recordings from multi-neuron records, as in our case, we
call txi the time of the spikei from the x cell. In this way
we have a multivariate, discrete time series with information
about the spiking dynamics of the neurons. Now, we shall
define new events,τx

i , using the above information. Thus,
the times of these new events are such that

τx
k = txi , if T1 < (txi − txi−1) < T2

with i = 2, mx, k = 1, nx, (1)

wheremx is the number of spikes the cellx has fired and
nx is the number of events of that cell. Note that indexk
is incremented every time a new event show up. The above
procedure select discrete “events” between interspike inter-
vals (ISIs)T1 = ISImin andT2 = ISImax. It is clear that in
the case ofp consecutive spikes separated between them in
a such a way that they fall inside the temporal window de-
fined byEq. (1), we shall plot justp − 1 spikes, since the
first one is missing.

Defining events in the above way allows us to investigate
the behavior of the retinal ganglion cells for different ISIs
values.Fig. 1shows an example of simultaneously recorded
extracellular responses to 30 consecutive and identical full
field white flashes (top trace). Close inspection of the firing
patterns shows some degree of variability in the responses
of each cell to repeated stimulation, introducing uncertainty
in the code. Furthermore some cells seems to fire more or
less constantly, irrespective of the stimuli (e.g., cells num-
ber 6, 7, 34, 35, 64, 66, 67, 68). The lower panel shows
the events for a window of ISImin = 2 ms and ISImax =
10 ms, or 100–500 spikes/s. Each dot in the lower panel of
Fig. 1 represents a spike and its corresponding time as in
the middle panel, but with the condition that there must

Fig. 1. Example of simultaneously recorded extracellular responses from
a population of rabbit ganglion cells to 30 consecutive and identical
flashes. The top trace shows the timing of light stimulus. Middle panel:
Recorded neuron responses. Lower panel: Conditioned spikes plot. Each
dot represent a spike under the condition that there exist another preceding
spike, within a temporal range of 2–10 ms, belonging to the same cell.
Although each dot represents a single spike (middle panel) or conditioned
spike (lower panel), sometimes spikes that are very close could appear
as a single dot due to the printed graph resolution (seeFigs. 2 and 3).
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Fig. 2. Raster plot and population analysis under random intensities stim-
ulation. Upper panel: stimuli representation. (A) Individual responses as
function of time and population plots. (B) Conditioned spikes as function
of time and population plots. In both cases, population information was
obtained by summing up the total number of spikes or conditioned spikes
in bins of 5 ms. Although each dot represents a single spike (middle
panel) or conditioned spike (lower panel), sometimes spikes that are very
close could appear as a single dot due to the printed graph resolution (see
Fig. 3 for a zoom of the data around 28 s). c. n. stands for “cell number”.

be another precedent spike temporally close to it. We shall
call these events conditioned spikes, in order to differenti-
ate them from the single spikes. Comparing spikes (mid-
dle panel) with conditioned spikes (lower panel), it can be
seen that these events seems to better correlate with the
stimuli (top trace), even for those cells with high firing
rates.

Fig. 2 shows the conditioned spikes for an experiment
using random intensities stimulation of the same population
of cells. In this example, not all the intensities are able to
induce responses from all the sampled retinal cells. In fact,
the two lower intensities levels do not elicit response at all.
However, when these spikes are plotted taking into account
the condition imposed byEq. (1)(using a temporal window
of ISImin = 2 ms and ISImax = 10 ms) the responses seem
again to be noise reduced.

2.3. Synchronized events

As can be seen inFigs. 1 and 2, events are almost ex-
clusively grouped around stimuli times. This fact led us to
explore the idea of event synchronization, where the events
we are considering are spikes conditioned by the presence
of other spikes in its temporal vicinity. First of all, one
needs to define what is meant by synchronization or “at the
same time”. In order to accomplish this we have followed
the method of event synchronization recently developed by
Quian Quiroga et al. (2002). However, we shall introduce
a slight modification of the original method. Therefore, we
define events synchronization betweenat least two eventsτx

i

at timei in cell x, and eventτy
j at timej in cell y, allowing a

time lag tSE between synchronized events (SE) in different

cells,Ji (tSE) as

J(tSE) =




1 ⇔ ∃τx
i ,

τ
y
j

|τx
i − τ

y
j | < tSE

0 ⇔ otherwise

(2)

with i and j (as defined inEq. (1))

1 ≤ i ≤ nx, 1 ≤ j ≤ ny, 1 < x < N, 1 < y < N − 1,

whereN is the number of cells.
Once an ISI window is fixed, according toEq. (1), we

look for coincident events by usingEq. (2). When two or
more events are inside a temporal windowtSE the number
of SE is increased by one. This means that, for instance, if
τx
i is synchronized withτy

j and withτz
k , the three events are

inside the temporal windowtSE, we count it as two SE, that
is τx

i synchronized withτy
j andτ

y
j with τz

k . Therefore, we can
take into account all the coincidences between at least two
events of different neurons, which roughly speaking means
that we are looking for synchronization of spikes of similar
ISI.

The fact that we use the term “at least” gives more flex-
ibility and it is a generalization of this concept for more
than two series. In this sense, it is rather common that more
than two events appear at the same time. Nevertheless using
this minimum constraint allow to look for synchronization
at very high firing rates, and allows to compare events with
more tight conditions, i.e., “at least three”, “at least four”,
etc.

3. Results

3.1. Firing events

The number of plotted cells is reduced using this kind of
representation, since the cells firing with ISIs outside the
imposed temporal window are not represented. An example
is illustratedFig. 3, which shows a zoom ofFig. 2. The
upper panel represents the stimulus, in this case the fall of
light intensity (around 27.93 s). The middle panel plots the
recorded spike times of every single cell (dots) and the lower
panel shows the corresponding conditioned spikes.

Because the number of firing events could be not repre-
sentative of the whole sample, we have studied the number
of “active” cells for every ISIs in different experiments.
Fig. 4shows the number of cells (ordinate) which are firing
with ISIs shortest or equal to a particular ISI (abscissa),
in two typical experiments using periodic and random
flicker stimulation. The number of firing events is decreas-
ing slowly, and remains almost constant for 1/ISI from
100 to 300 spikes/s. Thus, at 240 spikes/s, which corre-
spond to ISI= 4 ms, there are still 47 cells whose activity
shows ISIs shortest or equal to 4 ms in the periodic exper-
iment, and 40 cells in the experiment with random flicker
stimulation.
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Fig. 3. Zoom of the data fromFig. 2 (time around 28 s) to show the
difference between recorded and conditioned spikes. Each dot represents
a single spike (middle panel) or conditioned spike (lower panel).

Fig. 5 plots the number of events as a function of ISI
in steps of 10 spikes/s. We have used non-overlapped,
�(1/ISI) = 5 spikes/s and overlapped windows,�(1/ISI) =
30. The number of events do not decrease steadily as the
ISIs decrease. Instead, there exists a wide rate range where
the number of events seems to be constant or even in-
creasing, as can be seen for the case of flicker experiments
at 300 spikes/s. Anyway, we would like to emphasize the
continuous character of events as a function of ISI.

To quantify the variability (across the population) of
spikes and events, we have computed the Fano factor (FF)

Fig. 4. Number of ganglion cells with conditioned spikes for different
firing rates. In order to compare the data, the graph shows the same
population of ganglion cells using periodic (squares) and random flicker
stimulation (filled circles).

Fig. 5. Number of events as a function of ISI for the same population of
ganglion cells using periodic (dashed line) and random flicker stimulation
(continuous line). All calculations are done as a function of the 1/ISI,
in steps of 10 spikes/s. Both overlapped (�(1/ISI) = 5 spikes/s) and
non-overlapped (�(1/ISI) = 30) windows have been used as described
in the text.

dispersion (Fano, 1947; Koch, 1999; Teich et al., 1997),
which for an ideal Poisson process has a value of one.
Briefly, the procedure is as follows: for each time resolution
T, the average number of spikes in each bin〈N(T)〉, and its
corresponding variance Var[N(T)] is calculated. FF is then
assessed as

F(T) = Var[N(T)]

〈N(T)〉
This calculation was carried over each cell, and we also

calculated the average and standard deviation of FF in the
population,〈F〉 andσ[F]. Furthermore, we repeated the same
calculation, but considering events instead of spikes.

Fig. 6shows the average and standard deviation of FF for
a typical experiment using periodic stimulation. The upper
panel (A) plots the FF for ISIs in the range 2 and 10 ms.
Middle panel (B) corresponds to conditioned spikes using a
particular temporal window of 4 and 6.6 ms and the lower
panel (C) corresponds to FF calculation using the raw data,
that is, spike times. Selecting events with the shortest ISIs,
which is in fact what we have done by using the 2–10 ms, is
equivalent to perform a high pass filter, and one would ex-
pect that dispersion along the population would be reduced.
However the dispersion along the population in the 4 and
6.6 ms window (B), is smaller than in the other two cases,
implying that the number of events is more uniformly dis-
tributed. This reduced dispersion is not due to a less number
of cells firing at these ISIs (seeFig. 4). Thus ISIs windows,
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Fig. 6. Comparison of the Fano factor to observed results for a typical
experiment with periodic stimulation: (A) Fano factor for recorded spikes.
(B) Fano factor for conditioned spikes with ISI in a 4–6.6 ms window.
(C) Fano factor for conditioned spikes with ISIs in a 2–10 ms window.

defined byEq. (1), seems and useful tool to select events
more uniformly distributed. Almost the same findings are
obtained in experiments using random flicker stimulation.

3.2. Population analysis

To extract population information from the recorded neu-
rons, it is necessary to introduce discretization in time. Mid-
dle panel ofFig. 2A shows an example of the firing events
of a population of rabbit ganglion cells for random intensi-
ties stimulation when we summed up the number of spikes
of different cells in non-overlapped bins of 5 ms. Averag-
ing spike activities in all the cells, smoothes out differences
between neuron’s behavior, giving rise to a “good” activity
pattern as shown in the population dynamics ofFig. 2A. It is
clear from this plot, that population analysis (middle panel)
sharply follows the visual stimulation. Thus one can realize
that the stimuli can be identified readily although there is
also some background population activity. Middle panel of
Fig. 2B plots the “event population activity”. In this case,
background activity is almost null, and events seem to be
grouped around (after) stimuli times. Therefore, this condi-
tioned spike plot, allows to discriminate the temporal and
firing rate activities of individual cells and can be an useful
procedure to describe population spike dynamics.

In order to corroborate that population information given
by spike times and conditioned spike times are equivalent,
we have analyzed correlated activity in response to stimula-
tion. As an example,Fig. 7 shows the cross-correlation es-
timate between spike population data and conditioned spike
population for two different ISI windows. For this calcula-
tion, we have summed up the number of spikes of different
retinal ganglion cells using non-overlapped bins of 5 ms. Our
results show that cells responses are within expected times
in the three cases, although cross-correlation look sharper

Fig. 7. Correlated activity in response to a periodic stimulus for recorded
spikes and two different temporal ISI windows. Dashed line: Recorded
spike population time series. Solid line: Conditioned spike population time
series with ISIs in the 4–6.6 ms window. Long dashed line: Conditioned
spike population time series with ISIs in between 2 and 10 ms.

(quantified by low oscillations) in the case of the 4–6.6 ms
ISI window (solid line).

3.3. Synchronized events

Fig. 8 show the percentage of events that are synchro-
nized (SE), from the total number of events, as a function

Fig. 8. Percentage of synchronized events (SE) taken from the total
number of events. Solid lines correspond to a typical flicker experiment,
whereas dashed lines correspond to a standard experiment with periodic
stimulation. The plot shows events with at least two or three synchronized
events.
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of 1/ISI. The number of SE in the case of at least two SE
is approximately 10% of the total number of events in each
firing rate window. Increasing the number of minimum SE
to three, decreases the number of SE to less than 5% on av-
erage. The important point to be considered here is that the
percentage of SE does not seem to decrease steadily as the
ISI decrease.

Aiming to quantify up to what extent there exists a causal
relation between stimuli times,s(t′) and SE, we have de-
veloped a simple statistics to estimate the probability that a
light stimulus has been turned on or off at timet′, know-
ing that there has been synchronized eventst–t′ after that,
P[s(t′)/Sync(t–t′)]. To estimate this probability, we counted
the number of synchronized events which were “close” to
light ON or light OFF, and the number of events which are
also synchronized with another event (Eq. (2)). We quan-
tify the time to peak response of individual ganglion cells
trains to flash stimulations by using cross-correlation analy-
sis. We found out that on average it was of 70–80 ms, which
is in agreement with the results reported by other authors
(Warland et al., 1997). According with these results we de-
cided to look for SE in a temporal window of 100 ms after
light ON and light OFF. We calculated the quotient of syn-
chronized events which fall in the 100 ms temporal window
to the total number of synchronized events for different val-
ues of the synchronization timetSE. This is illustrated in
Fig. 9 (upper panel), which shows an example for the case
of tSE = 2 ms. As we can easily see, for certain ISIs, there is
a causal relation between the SE and the stimulus. WhentSE

Fig. 9. Percentage of synchronized events (SE) correlated with the stimulus
for two different synchronization times, namelytSE = 2 ms (upper panel)
and tSE = 50 ms (lower panel).

is increased to 50 ms (Fig. 9, lower panel), this strict causal-
ity is lost, although the correlation between the stimulus and
SE is still greater than 90%. This high degree of correlation
between stimulation and SE for such hightSE is remarkable
because 50 ms is a rather high temporal window to be con-
sidered for “at the same time”. In fact one can speculate on
this mechanism being useful to enhance integration times.

4. Discussion

We have introduced a new representation of neural ensem-
ble recordings, in which instead of plotting single spikes,
we plot spikes conditioned by the presence of other spikes
in its temporal vicinity. The method provides useful infor-
mation about the stimulus contained in the temporal pattern
of the events sequence. Using this “conditioned spikes”, we
have shown that synchronized events are highly correlated
with stimuli times.

The method is inspired by the assumption that signal
transmission must be very reliable. The contextual encoding
of space, time, intensity and color by ensembles of ganglion
cells could mitigate the effects of noise, response variabil-
ity and ambiguity in individual ganglion cells (Funke and
Worgötter, 1997). Thus, two or more consecutive spikes of
simultaneously active cells in a certain time window could
be used as a mean to obtain more reliable information about
the presence and features of the visual stimulus. It means
that the brain could potentially deduce useful information
by integrating several consecutive spikes from different neu-
rons within an extended time window and support the idea
that visual information is coded as the overall set of activ-
ity levels across neurons, rather than by single cells. In this
sense, the temporal relationship between single spikes in a
distributed neuronal network have been related to the encod-
ing of sensations and behavioral responses (Abeles et al.,
1993, 1994).

Looking for synchrony of these conditioned events, we are
in fact evaluating synchrony of instantaneous firing rates. In
this way, we are taking into account a combination of a rate
and a temporal code. Thus, this temporally structured activ-
ity, in addition to the rate code, could be a fast and powerful
mechanism to integrate the incoming information of the vi-
sual scene. Needless to say that we do not know if the brain
uses this strategy; however, there is ample evidence from
different systems that rate and spike timing are important
variables for encoding information. In this sense, it should
be emphasized that modulation of biologically significant
information in living organism occurs on time scales com-
parable to the mean interval between spikes, so that sensory
neurons can generate only a few spikes before the parame-
ters of the stimulus change (Bialek and Rieke, 1992; Bialek
et al., 1991). We propose that this new representation, in ad-
dition to the other approaches currently used (multivariate
statistical methods, neuronal networks, information theory,
etc.), can be a useful procedure to describe population spike
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dynamics and to get insight into the mechanism underlying
neuronal coding.
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